Copied to
clipboard

G = C2×C23.10D4order 128 = 27

Direct product of C2 and C23.10D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C23.10D4, C24.92D4, C25.28C22, C24.232C23, C23.286C24, (C22×C4)⋊16D4, (D4×C23).10C2, C23.142(C2×D4), C22.110C22≀C2, C23.366(C4○D4), (C23×C4).318C22, (C22×C4).494C23, C22.169(C22×D4), C22.161(C4⋊D4), C2.C4263C22, C22.77(C4.4D4), (C22×D4).492C22, C22.101(C22.D4), (C2×C4)⋊7(C2×D4), C2.8(C2×C4⋊D4), (C22×C4⋊C4)⋊12C2, C2.7(C2×C22≀C2), C2.7(C2×C4.4D4), (C2×C4⋊C4)⋊105C22, (C2×C22⋊C4)⋊75C22, (C22×C22⋊C4)⋊10C2, C22.166(C2×C4○D4), C2.7(C2×C22.D4), (C2×C2.C42)⋊25C2, SmallGroup(128,1118)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C2×C23.10D4
C1C2C22C23C24C23×C4C22×C22⋊C4 — C2×C23.10D4
C1C23 — C2×C23.10D4
C1C24 — C2×C23.10D4
C1C23 — C2×C23.10D4

Generators and relations for C2×C23.10D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf=bc=cb, bd=db, ebe-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=ce-1 >

Subgroups: 1300 in 626 conjugacy classes, 164 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C23×C4, C22×D4, C22×D4, C25, C2×C2.C42, C23.10D4, C22×C22⋊C4, C22×C4⋊C4, D4×C23, C2×C23.10D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C22×D4, C2×C4○D4, C23.10D4, C2×C22≀C2, C2×C4⋊D4, C2×C22.D4, C2×C4.4D4, C2×C23.10D4

Smallest permutation representation of C2×C23.10D4
On 64 points
Generators in S64
(1 23)(2 24)(3 21)(4 22)(5 57)(6 58)(7 59)(8 60)(9 45)(10 46)(11 47)(12 48)(13 42)(14 43)(15 44)(16 41)(17 51)(18 52)(19 49)(20 50)(25 40)(26 37)(27 38)(28 39)(29 36)(30 33)(31 34)(32 35)(53 62)(54 63)(55 64)(56 61)
(1 63)(2 34)(3 61)(4 36)(5 20)(6 48)(7 18)(8 46)(9 25)(10 60)(11 27)(12 58)(13 30)(14 55)(15 32)(16 53)(17 39)(19 37)(21 56)(22 29)(23 54)(24 31)(26 49)(28 51)(33 42)(35 44)(38 47)(40 45)(41 62)(43 64)(50 57)(52 59)
(1 9)(2 10)(3 11)(4 12)(5 32)(6 29)(7 30)(8 31)(13 18)(14 19)(15 20)(16 17)(21 47)(22 48)(23 45)(24 46)(25 63)(26 64)(27 61)(28 62)(33 59)(34 60)(35 57)(36 58)(37 55)(38 56)(39 53)(40 54)(41 51)(42 52)(43 49)(44 50)
(1 52)(2 49)(3 50)(4 51)(5 56)(6 53)(7 54)(8 55)(9 42)(10 43)(11 44)(12 41)(13 45)(14 46)(15 47)(16 48)(17 22)(18 23)(19 24)(20 21)(25 33)(26 34)(27 35)(28 36)(29 39)(30 40)(31 37)(32 38)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(2 12)(4 10)(5 32)(6 8)(7 30)(14 17)(16 19)(22 46)(24 48)(25 63)(26 28)(27 61)(29 31)(33 59)(34 36)(35 57)(37 39)(38 56)(40 54)(41 49)(43 51)(53 55)(58 60)(62 64)

G:=sub<Sym(64)| (1,23)(2,24)(3,21)(4,22)(5,57)(6,58)(7,59)(8,60)(9,45)(10,46)(11,47)(12,48)(13,42)(14,43)(15,44)(16,41)(17,51)(18,52)(19,49)(20,50)(25,40)(26,37)(27,38)(28,39)(29,36)(30,33)(31,34)(32,35)(53,62)(54,63)(55,64)(56,61), (1,63)(2,34)(3,61)(4,36)(5,20)(6,48)(7,18)(8,46)(9,25)(10,60)(11,27)(12,58)(13,30)(14,55)(15,32)(16,53)(17,39)(19,37)(21,56)(22,29)(23,54)(24,31)(26,49)(28,51)(33,42)(35,44)(38,47)(40,45)(41,62)(43,64)(50,57)(52,59), (1,9)(2,10)(3,11)(4,12)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,47)(22,48)(23,45)(24,46)(25,63)(26,64)(27,61)(28,62)(33,59)(34,60)(35,57)(36,58)(37,55)(38,56)(39,53)(40,54)(41,51)(42,52)(43,49)(44,50), (1,52)(2,49)(3,50)(4,51)(5,56)(6,53)(7,54)(8,55)(9,42)(10,43)(11,44)(12,41)(13,45)(14,46)(15,47)(16,48)(17,22)(18,23)(19,24)(20,21)(25,33)(26,34)(27,35)(28,36)(29,39)(30,40)(31,37)(32,38)(57,61)(58,62)(59,63)(60,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,12)(4,10)(5,32)(6,8)(7,30)(14,17)(16,19)(22,46)(24,48)(25,63)(26,28)(27,61)(29,31)(33,59)(34,36)(35,57)(37,39)(38,56)(40,54)(41,49)(43,51)(53,55)(58,60)(62,64)>;

G:=Group( (1,23)(2,24)(3,21)(4,22)(5,57)(6,58)(7,59)(8,60)(9,45)(10,46)(11,47)(12,48)(13,42)(14,43)(15,44)(16,41)(17,51)(18,52)(19,49)(20,50)(25,40)(26,37)(27,38)(28,39)(29,36)(30,33)(31,34)(32,35)(53,62)(54,63)(55,64)(56,61), (1,63)(2,34)(3,61)(4,36)(5,20)(6,48)(7,18)(8,46)(9,25)(10,60)(11,27)(12,58)(13,30)(14,55)(15,32)(16,53)(17,39)(19,37)(21,56)(22,29)(23,54)(24,31)(26,49)(28,51)(33,42)(35,44)(38,47)(40,45)(41,62)(43,64)(50,57)(52,59), (1,9)(2,10)(3,11)(4,12)(5,32)(6,29)(7,30)(8,31)(13,18)(14,19)(15,20)(16,17)(21,47)(22,48)(23,45)(24,46)(25,63)(26,64)(27,61)(28,62)(33,59)(34,60)(35,57)(36,58)(37,55)(38,56)(39,53)(40,54)(41,51)(42,52)(43,49)(44,50), (1,52)(2,49)(3,50)(4,51)(5,56)(6,53)(7,54)(8,55)(9,42)(10,43)(11,44)(12,41)(13,45)(14,46)(15,47)(16,48)(17,22)(18,23)(19,24)(20,21)(25,33)(26,34)(27,35)(28,36)(29,39)(30,40)(31,37)(32,38)(57,61)(58,62)(59,63)(60,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,12)(4,10)(5,32)(6,8)(7,30)(14,17)(16,19)(22,46)(24,48)(25,63)(26,28)(27,61)(29,31)(33,59)(34,36)(35,57)(37,39)(38,56)(40,54)(41,49)(43,51)(53,55)(58,60)(62,64) );

G=PermutationGroup([[(1,23),(2,24),(3,21),(4,22),(5,57),(6,58),(7,59),(8,60),(9,45),(10,46),(11,47),(12,48),(13,42),(14,43),(15,44),(16,41),(17,51),(18,52),(19,49),(20,50),(25,40),(26,37),(27,38),(28,39),(29,36),(30,33),(31,34),(32,35),(53,62),(54,63),(55,64),(56,61)], [(1,63),(2,34),(3,61),(4,36),(5,20),(6,48),(7,18),(8,46),(9,25),(10,60),(11,27),(12,58),(13,30),(14,55),(15,32),(16,53),(17,39),(19,37),(21,56),(22,29),(23,54),(24,31),(26,49),(28,51),(33,42),(35,44),(38,47),(40,45),(41,62),(43,64),(50,57),(52,59)], [(1,9),(2,10),(3,11),(4,12),(5,32),(6,29),(7,30),(8,31),(13,18),(14,19),(15,20),(16,17),(21,47),(22,48),(23,45),(24,46),(25,63),(26,64),(27,61),(28,62),(33,59),(34,60),(35,57),(36,58),(37,55),(38,56),(39,53),(40,54),(41,51),(42,52),(43,49),(44,50)], [(1,52),(2,49),(3,50),(4,51),(5,56),(6,53),(7,54),(8,55),(9,42),(10,43),(11,44),(12,41),(13,45),(14,46),(15,47),(16,48),(17,22),(18,23),(19,24),(20,21),(25,33),(26,34),(27,35),(28,36),(29,39),(30,40),(31,37),(32,38),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(2,12),(4,10),(5,32),(6,8),(7,30),(14,17),(16,19),(22,46),(24,48),(25,63),(26,28),(27,61),(29,31),(33,59),(34,36),(35,57),(37,39),(38,56),(40,54),(41,49),(43,51),(53,55),(58,60),(62,64)]])

44 conjugacy classes

class 1 2A···2O2P···2W4A···4T
order12···22···24···4
size11···14···44···4

44 irreducible representations

dim111111222
type++++++++
imageC1C2C2C2C2C2D4D4C4○D4
kernelC2×C23.10D4C2×C2.C42C23.10D4C22×C22⋊C4C22×C4⋊C4D4×C23C22×C4C24C23
# reps1184118812

Matrix representation of C2×C23.10D4 in GL7(𝔽5)

4000000
0100000
0010000
0001000
0000100
0000040
0000004
,
1000000
0040000
0400000
0004000
0000400
0000010
0000004
,
1000000
0400000
0040000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
0000100
0000040
0000004
,
1000000
0200000
0030000
0000100
0004000
0000004
0000010
,
4000000
0100000
0040000
0001000
0000400
0000010
0000004

G:=sub<GL(7,GF(5))| [4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0],[4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4] >;

C2×C23.10D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{10}D_4
% in TeX

G:=Group("C2xC2^3.10D4");
// GroupNames label

G:=SmallGroup(128,1118);
// by ID

G=gap.SmallGroup(128,1118);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,100]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f=b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*e^-1>;
// generators/relations

׿
×
𝔽